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1. INTRODUCTION

The value distribution of generalized axisymmetric potentials (GASP) in
EN, of complex order, is characterized geometrically in terms of the range of
associated analytic functions of one complex variable by dr~wing together
methods from the theory of polynomials of one complex variable and the
integral operator methods of Bergman and Gilbert. Comparisons are made
between the ranges of GASP of different orders that have the same associate;
a connection with Newtonian Potentials is established.

Recent studies by Marden [3, 4] used integral operator methods to bound
the zero sets of harmonic polynomials and infrapolynomials in EN. The zeros
of associated polynomials of one complex variable locate cones in EN where
axisymmetric harmonic polynomials have no zeros.

The author [7-9] considered the distribution of values of axisymmetric
potentials and potentials in three real variables by using associated analytic
functions of one complex variable to determine open convex sectors consisting
of values excluded by these potentials. The present study establishes closed
sets that bound the range of the GASP, depend directly on its associate, and
are in general, neither convex nor unbounded.

A generalized axisymmetric potential of order fL, H" , satisfies the singular
partial differential equation

[PH" + a
2
H" + 2fL oH" = 0

ox2 Op2 P op

for Re(fL) > O. When 2fL = N - 2, the relation

(2)

holds between the Cartesian coordinates (Xl"'" XN) E EN and the axisym­
metric coordinates x and p. Then Eq. (1) becomes the axially symmetric
LaPlace's equation in EN. Axisymmetric potentials arise when fL = t.
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In developing his theory of the singularities of GASP, Gilbert [2, p. 168]
uses the integral representation for Gegenbauer polynomials

21/2T(n + 2 ) ITTrnC "(cos 8) = P, (x + ip cos t)n (sin t)2"-1 dt
n n! T(p,)2 0

(3)

and the polar coordinates x = r cos 8, p = r sin 8 to associate with each
GASP

_ 00 ann! rn
HJr, 8) = HJx, p) = I T(n ' 2 ) Cn"(cos 8),

n~O T P,

an analytic function

00

h(O= I an~n
n=O

(4)

(5)

by means of an operator equivalent to the operator we refer to as H" :== A,,(h)
where

H,,(x, p) = (x" rh(x + ip cos t) dm,,(t),
o

(6)

(X" = 21- 2,,/ r(p,)2 with measure dmuCt) = (sin t)2"-1 dt. The principal values
of the weight (sin t)2"-1, 22" and r(p,) are taken when p, is complex and

(3" = r dmJt) = 71'1/2r(p,)/T(p, + t).
o

(7)

Legendre's duplication formula evaluates the product (X"{3,, = (r(2p,))-1.
We consider the domain of the associate h to be an axiconvex set [2, p. 138]

wee containing the origin with the property that ~t + ~(1 - t) E W,

o ~ t ~ 1, whenever SEw. The corresponding domain of the H" is the
axisymmetric set Q = {(x, p)! x + ip E w} which may be viewed, when
2p, = N - 2, by rotating w about the axis of symmetry in EN.

The family of GASP generated from (6) on Q by fixing hand wand varying
p, is specified by

(8)

Restricting the order p, so that Im(p,) = 0 reduces CC(h) to the subfamily
~(h).

For each circle Xo : x = X o , P = Po in Q there corresponds a segment

(9)



258 PETER A. MCCOY

in wand the image of ao under h, h(ao)' The closed convex hull of the curve
h(ao), h*(ao), and the set

h*(w) = {h*(ao)[ ao C w} (10)

are of prime interest in studying the values of HI' . In general, h*(w) is not
convex (see Example 1) but is contained in the closed convex hull of hew).
If necessary, w may be restricted so that h*(w) does not degenerate to C.

2. VALUE DISTRIBUTION OF GASP HAVING REAL ORDER

We begin our study of GASP having real order in

THEOREM 1. Let f!4(h) be a/amity of GASP defined on Q. Then on Q, each
HI' E f!4(h) may be represented as

H,,(X) = G,,(X)!T(2p,), (11)

where G" assumes its values in the set h*(w) for all orders p,. In particular, if
h*(w) 1> 0, then HI' has no zeros on Q.

Proof For each HI' E f!4(h), we define the GASP G" by

XOEQ (12)

and then transform this representation into the equivalent integral

r vet) dm,,(t) = 0,
o

v(t) ~ [h(xo + ipo cos t) - G,,(Xo)] (13)

by means of the operator A" .
If there is a circle Xo E Q for which G,,(Xo) rf: h*(w), then G,,(Xo) rf: h*(ao)'

So that for some real constant 8, the inequality

8 < arg vet) < 8 + 'TT (14)

holds on °< t < 'TT. The integrand of (13) must satisfy these same bounds

8 < arg[v(t) dm,,(t)] < 8 + 'TT (15)

for °< t < 'TT due to the positivity of the measure dm,,(t).
Consequently, the integral in (13) viewed as the limit of a sum of vectors

drawn from the origin to points in the half-plane 8 < arg ~ < 8 + 'TT cannot
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vanish. Thus, Eq. (13) cannot be satisfied, so that G,,(Xo) =1= r(2fL) H...(Xo),
which contradicts the definition of G" and proves the theorem.

Using this result to measure the separation in values of GASP induced by a
separation of values of the associates, we consider a fixed circle Xo : x = X o ,

P = Po and all circles X: x = Xl , P = Pl for which Xl = Xo and Pl ,:;; Po .

This relation is indicated by X -< Xo . Then Theorem 1 leads us to

COROLLARY 1.1. Let PJl(h) and PJl(k) have !J as their domain. Let Xoand Yo
be circles in !Jfor which h*(a(Xo)) n k*(a(Yo)) = 0. Then for all HI.' E PJl(h),
all Kv E PJl(k) and all circles X -< Xo and Y -< Yo

(16)

Thus, the only possible zeros ofHI.' are on those circles Xofor which h*(ao) 3 O.

Proof Let us assume that under the hypothesis, !J contains circles Xo
and Yo ; PJl(h) and PJl(k) contain GASP HI.' and Kv for which equality holds in
(16). By Theorem I, HI.' and Hv may be represented as

and (17)

with G,,(Xo) E h*(a(Xo)) and J/Yo) E k*(a(Yo)). The assumption of equality
in (16) yields

(18)

a violation of the null intersection of h*(a(Xo)) and k*(a(Yo)). In particular,
if k = 0 and 0 ¢= h*(a(Xo)), then H,,(X) =1= 0 for all fL > 0 and all circles
X -< Xo , which establishes the result.

Let {hn}::'=l be a set of functions analytic on the domain wand {An}::'=l be
complex constants with h defined by the linear combination

m

hW = L: AnhnW,
n~l

~EW. (19)

Then the observation [1, p. 415] that the relation

m

h*(ao) = L: Anhn*(ao)
n~l

(20)

holds for each segment ao C w establishes a connection between the value
distributions of families of GASP analogous to those due to Marden, Walsh
[5, p. 77 if.], and others on null sets of linear combinations of polynomials of
one complex variable. We find



260 PETER A. MCCOY

COROLLARY 1.2. Let {3i'(hn>r;;~l have Q as their common domain. Let
each HI.' E fJi(h n) have order JL for I :s;: n :s;: m. Then for any set of complex
constant; {An}';:'d , these GASP are connected by

m m

L AnH"n(Xo) = (r(2JL))-1 L An1Jn(Xo),
n=l n=1

(21)

with 1Jn(X) E hn*(uo) for X -< Xo , I :s;: n :s;: m.

These results extend the previously mentioned work by the author and
Marden whenever uo is a segment in the domain of h and ~ is a complex
constant for which the curve h(uo) - ~ lies in a convex sector through the
origin. We list this application in the form found in

THEOREM 2. Let h be an analytic function on wand Go C w. Let ~ be a
complex constant such that

(22)

for all Ain the complement of the convex sector I arg(' - 01 < y. Thenfor all
circles X -< Xo and all HI.' E 3i'(h),

H...{X) # (~ + A)/ r(2JL)

for all A in the sector I arg(S - ~)I > y.

Marden [3, p. 140], recognizing that the zeros of the polynomial

(23)

m

hW - ~ = L an,n - ~,
n~O

lie in the disk

(24)

determines cones [3, p. 140] in £3 in which harmonic polynomials omit the
real value ~. We shall refer to the solutions of

o < P :s;: ± x tan (rr/2m) - c sec (rr/2m) (26)

as cones where x and p are the axisymmetric coordinates of Eq. (1).
Inasmuch as Luca's theorem [5, p. 22] states that all the critical points of a

nonconstant polynomial lie in the closed convex hull of its zeros, the zeros
of each polynomial

(d/d')P [hW - ~] = m'f an+p{n ,+ p)! ,n (27)
n=O n.

:s;: p :s;: m - I satisfy (25). The reasoning of theorem 2 produces
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COROLLARY 2.1. Let gbe an arbitrary real constant and H,/ be the gen­
eralized axisymmetric harmonic polynomials

f1 Per 0) = mf an+pT(n + p) r
n

C "(cos 0)
", n~O T(n + 2J1,} n

for 0 :(: p :(: m - 1. Then on each circle Xo in the cones (25),

(28)

p, > O. (29)

An application of Theorem 1 determines the value distribution of a family
of GASP that is periodic in the axial coordinate.

EXAMPLE 1. Let us consider the GASP

(30)

for real nonzero values of a. The cylinder Q(b) = {(x, p)1 0 :(: p :(: b} is
defined for b > O. Then for all circles Xo in Q(b) and all p, > 0:

(31)

for all gin the complement of the annulus

A(a, b) = {S Eel exp(-I a I b) :(: I ~ I :(: exp(1 a I b)}. (32)

Consequently, no H" has a finite zero.

Proof The H" are entire functions and periodic with

H,,(x + 27Tja, p) = H,,(x, p) (33)

because their associate is identified by (5) as the exponential h(~) = exp(iaO.
Since h(ero) = gEe I exp(-I a I Po) :(: 1~ 1:(: exp(1 a 1Po), arg ~ = axo},
the associate maps the infinite strip I1m ~ I :(: b onto the annulus A(a, b).
The relation h*(ero) = h(ero) holds for this associate so that h*(w) = h(w) =

A(a, b). We conclude by Theorem 1 that T(2p,) H,,(Xo) E A(a, b) if Xo E Q(b).
Since A(a, b) ;jJ 0 for b < 00, there is no circle X within a finite distance of
the origin on which H" vanishes.

Let us turn our attention to the influence of the order of a GASP on its
values. For each fixed order v, we specify the values of GASP of order
p, > v in terms of those of order v. The corresponding relations for orders
p, < v can then be found by reflection in the unit circle 1 ~ I = I.

For these comparisons we shall deal with associates which are convex on
their domains. Convexity implies that if h is defined on wand ero C w, then
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y,,(ao), the angle subtended by the curve h(ao) at the origin, does not exceed a
fixed positive constant y" < 7T.

These comparisons will require the configuration E(y) having symmetry in
the real axis which consists of the union of the two disks

D(y) = gEe I 21 ~ II ~ - I I COS(7T - y) ~ I ~ 12 + I ~ - 1 12 - I} (34)

(for diagram see [5; p. 31]) formed from the set of points for which the
segment [0, 1] subtends an angle of at least 7T - Y and the region

S(y) = {~E C I I arg ~ I :::;; y :::;; I arga - I)I} (35)

included in the sector I arg ~ I :::;; y and exterior to the sector Iarg(~ - 1)1 < y.
We consider

THEOREM 3. Let fJf(h) be convex on Q and H vE fJf(h). Then for each
H" E fJf(h) with order /-t > v, there exists afunction Tj such that TjHv is a non­
vanishing GASP of order /-t with H" and H v connected by

where Tj(X) E E(y,,).

rY.vHJX) = rY."Tj(X) Hv(X), (36)

Proof Inasmuch as H" and Hv can have no zeros on Q, Eq. (36) may be
used to define a continuous nonvanishing function Tj on Q. The operator A"
converts Eq. (36) into the equivalent form

r h(xo+ ipo cos t)(sin t)2v-l+; J(/-t,j, t) dt = 0 (37)
o

where
J(/-t,j, t) = [(sin t)2(,,-v)-J - 1j(Xo)(sin t)-i], (38)

o < t < 7T. If Tj(Xo) is a value for which

o < argJ(jL,j, t) < 0 + 7T - y, (39)

for some constant 0, then Eq. (36) is contradicted. For then the combination
of (39) and the convexity of fJf(h) on Q,

K < arg[h(xo + ipo cos t)(sin t)2v-l+;] < K + y

for some K results in the bound

(40)

K + 0 < arg[h(xo + ipo cos t)(sin t)2v-l+; J(/-t, j, t)] < 7T + K + 0 (41)
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on 0 < t < 1T, which according to previous reasoning leads to a contradiction
of (36). Therefore, our problem reduces to locating the complements of sets
in C that violate (39).

If 1arg'l'}(Xo)1 > y, setj = I-' - v to obtain (41). If I arg('l'}(Xo) - 1)1 < y,
or if 'l'}(Xo) rf= D(y), set j = 0 to produce (41), which completes the proof.

When considering linear combinations of GASP, this result may be recast
in a form that is independent of the convexity of a specific family of GASP by
suitably restricting the domain w. Such a reformulation is found in

COROLLARY 3.1. Let {&i'(hn)}::'~lhave compact domain Q* and {An}::'~f be a
choice of complex constants for which the set 2::::=1 Anhn(w*) is in a convex
sector 1 arg(~ - Am+l) I < y. Then the members H" and H. of &i'(hn ) with
orders J1'n = I-' > v = V nfor 1 ~ n ~ m are conne~ted by the equation

m m

LYv L AnH"JX) = LY,,'l'},\(X) L AnHvn(X) + A,
n~l n~l

(42)

where A = ex"exvCAm+l - A)({3" - (3v'l'},\(X» with 'l'},\(X) E E(y) whenever A
is the sector I arg(Am +1 - 01 < y or A = O.

Applying the triangle inequality to this theorem and using the fact that the
set D(y) lies in the disk 1, - 1/2 I ~ CSC((1T - y)/2) produces bounds on the
magnitudes of GASP drawn from the same family as a function of their
order. These estimates do not appear to be obtainable by other methods.

COROLLARY 3.2. Let &i'(h) be convex on Q. Then for each circle Xo E Q
and all orders I-' > v,

3. AN EXTENSION TO GASP HAVING COMPLEX ORDER

The methods of the previous section are adopted to obtain a geometric
connection between the value distribution of GASP of real and complex
order in

THEOREM 4. Let re(h) be convex on Q. Then each H6 E re(h) may be repre­
sented as

XEQ (44)

with H" E &i'(h) and 1 'l'}(X) 1 ~ CSC((1T - Yh)/2) whenever Re 0 ~ 1-'.
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Proof The function 7) may be defined by (44) since the GASP, H" has
no zeros on Q. Let us rewrite (44) as

r h(xo + ipo cos t)(sin t)2,,-1 [(sin t)2" - 'I)(Xo)] dt = 0 (45)
o

where Xo E Q and (3 = 0 - fL. Then the envelope of the vector wct) = (sin t)2/J,
o < t < 7T, is in the disk I , I ~ 1 for Re (3 ;;? O. Thus, if

!7)(Xo)! > CSC«7T - Yh)/2),

we reason as in the previous theorems to find that Eq. (44) is contradicted.
Theorems 1 and 4 in combination reveal

COROLLARY 4.1. Let 'f/(h) be convex on Q. Then on Q, H 6 E 'C(h) has the
form

(46)

with G,,(X) E h*(w) and I 7)(X)1 ~ CSC(7T - Yh)/2) whenever Re 0 ;;? fL.

These results are applied in

EXAMPLE 2. On each cylinder Q(b), the GASP

(47)Reo >0
_ "" aninrn

H6(r, 8) = ,to Ten + 20) Cn6
(cos 8)

omits all values of the form (X6{3" gfor all I g I > exp (! a 1b) and all Re 0 ;;?o
fLo > 0, fLo fixed.

4. A CLASS OF NEWTONIAN POTENTIALS

Here we shall use an operator introduced by Marden [3] to generate
axisymmetric potentials. With this operator, an axisymmetric potential
H == H 1 / 2 having as its domain Q C £3 may be represented as

H(X) = (l/27Ti) f h(u) '-1 d',
2'1

u = x + (ipj2)a + '-1) (48)

where h is analytic on Q and 2; symbolizes one circuit around I 'I = I in
the positive direction. Cauchy's formula transforms this integral into

f h(u) '-1 en = 1/27Ti f f h(s) ds d'
2'1 9\ 2 2 nu - s)

(49)
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where ~ is a contour, a simple closed smooth rectifiable curve, containing
Q on which h is analytic and for which ~ n oQ = 4>. The double integral is
absolutely integrable, permitting the interchange of orders of integration
which gives

(50)

where the branch of the radical is chosen so that {x2 + p2}l/2 is positive. Thus,

'f h(s)ds
H(X) = Ij2m :E, {(x _ S)2 + p2}l/2 == N(X).

Combining this result with Theorem 1 leads us to

(51)

THEOREM 5. Let h be analytic on w, .ff' be a contour in w intersecting the
real axis in two points, and W s be an axiconvex set enclosed by .ff'such that
ow s n .ff' = 4>. Then on Q,

'f h(s)ds
N(X) = Ij2m :E {(x _ S)2 + p2}l/2 (52)

with N(X) E h*(uo) for all circles X -< Xo where the branch of the integrand is
chosen so that {x2 + p2}l/2 is positive.

We apply this result in

COROLLARY 5.1. The Newtonian potential

m f sn ds
N(X) = I am - n {(x _ S)2 + 2}l/2'

n~o:E P

has no zeros in the double cone

o < p ~ ± x tan(rrj2m) - sec(7Tj2m)

(53)

(54)

Proof The associate of N(X) is identified as hm = L.:~o am_n,n. The
Enestrom-Kakeya Theorem [5, p. 136] guarantees that the zeros of the
reciprocal polynomial

(55)

are in I 'I > 1 so that h('o) = 0 only if I '0 I ~ 1. We then use previous
reasoning in Eq. (51) to reach our conclusion.
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